P 7 R 840

P 7 R 840

P(7,r)= 840, then r=?​

Daftar Isi

1. P(7,r)= 840, then r=?​


[tex] \large\underline \mathcal{{SOLUTION:}}[/tex]

P(7,r) = 840

P(7,r) = n! / (n-r)!840 = 7! / (7-r)!(7-r)! = 7! / 840(7-r)! = 5040 / 840(7-r)! = 6

notice that 6 can be written as 3!

(7-r)! = 3!

cancel the factorial sign

7-r = 37-3 = r 4 = r

[tex] \\ [/tex]

[tex] \large\underline \mathcal{{ANSWER:}}[/tex]

The value of r is 4

2. P(7,r)=840 what is r? (permutation)


P(7, 4) = 840

7 x 5 x 4 x 3 = 840

3. What is the answer of p(7,r)=840


Answer: r =4

Explanation: p(7,r)= 840
                     P(7,r) = [tex] \frac{n!}{n-r}! where P(p,r)[/tex]
                      840= 7!/(7-4)!

4. If P(n,4) =840, what is n?A. 8B. 7C. 6D. 5​


Answer:

A

Step-by-step explanation:

sana makalutong pa brainliest din


5. 1. P (9. 3) = x2. P (n. 2) = 423. P (n. 4) =8404. P (11.r) = 1105. P (9. r) = 72​


Answer:

Maginstall ka po ng Gauthmath sobrang ganda po ng app na yan kase tamang sagot talaga binibigay nila mga tutor po ang sumasagot sa mga tanong sa math itype nyo lang po itong Invitation Code X3LKRX para magamit nyo po yung apps sana makatulong po yung apps yan po kase gamit kong apps

Step-by-step explanation:

pa follow po thanks


6. how can i determine what is the value of n in P(7,r)=840 in permutation ?


 Solve for r
7!/(7-r)! = 840 
7!/840=(7-R)!
7*6*5*4*3*2*1/840=(7-R)!
3*2*1=(7-R)!=3!
7-R=3
R=7-3=4 

7. Directions: Evaluate each Permutation. Write the answers in a separate paper1. P (9, 3) = x2. P (n. 2) = 423. P (n. 4) =8404. P (11.r) = 1105. P (9.7) = 72​


Explanation:

I'm not sure po kung Tama bayan.

#keepsafepo


8. Please answerPermutations 1. P(n,3) = 60 2.P(7,r) = 840


Permutation of n taken r has the formula,
[tex]P(n,r)= \frac{n!}{(n-r)!} [/tex]

1. P(n,3)=60

[tex] \frac{n!}{(n-3)!} =60[/tex]
[tex] \frac{n(n-1)(n-2)(n-3)!}{(n-3)!} =60[/tex]            -Factor n! up to (n-3)!
Since (n-3)! divided by itself is equal to 1, Then,
[tex]n(n-1)(n-2)=60[/tex]
The left side of the equation has 3 consecutive descending factors, do the same with 60, 
[tex]n(n-1)(n-2)=(5)(4)(3)[/tex]
Both sides have the same order, therefore, n = 5

2. P(7,r)=840

[tex] \frac{7!}{(7-r)!} =840[/tex]
[tex] \frac{5040}{(7-r)!} =840[/tex]
[tex] \frac{5040}{840} =(7-r)![/tex]
[tex]6=(7-r)![/tex]
Note that there is only one factorial that would result to 6, that is, 3!.
So, 
7-r=3
r=4


9. Activity 2 Supply the correct answer in each number. 1. P (7,0) = 840, then r= 2. Pln, 3) = 60, then n= 3. P ( 10,5) = 4. P (8,0) = 6, 720, then r= 5. P (8,3 ) = Activity 3 To the next levell​


Volunteer to be active in your community.
Be honest and trustworthy.
Follow rules and laws.
Respect the rights of others.
Be informed about the world around you
Respect the property of others.
Be compassionate.
• Take responsibility for your actions Volunteer to be active in your community.
Be honest and trustworthy.
Follow rules and laws.
Respect the rights of others.
Be informed about the world around you
Respect the property of others.
Be compassionate.
• Take responsibility for your actions Volunteer to be active in your community.
Be honest and trustworthy.
Follow rules and laws.
Respect the rights of others.
Be informed about the world around you
Respect the property of others.
Be compassionate.
• Take responsibility for your actions Volunteer to be active in your community.
Be honest and trustworthy.
Follow rules and laws.
Respect the rights of others.
Be informed about the world around you
Respect the property of others.
Be compassionate.
• Take responsibility for your actions Volunteer to be active in your community.
Be honest and trustworthy.
Follow rules and laws.
Respect the rights of others.
Be informed about the world around you
Respect the property of others.
Be compassionate.
• Take responsibility for your actions Volunteer to be active in your community.
Be honest and trustworthy.
Follow rules and laws.
Respect the rights of others.
Be informed about the world around you
Respect the property of others.
Be compassionate.
• Take responsibility for your actions

10. P(7,r)=840 what is rdand its formula


[tex]P(n,r)= \frac{n!}{(n-r)!} \\ \\ P(7,r)=840 \\ \\ 840= \frac{7!}{(7-r)!} \\ \\ 840(7-r)!=7! \\ \\ (7-r)!= \frac{5040}{840} \\ \\ (7-r)!=6[/tex]

And we know that [tex]3!=6[/tex], therefore,
[tex]7-r=3 \\ \\ r=4[/tex]

11. Activity 2: KEEP PRACTICINGIDirection: Solve for the unknown in each item,1. P(5,5) =2. P(7, r) = 8403. P(n, 3) = 504​


Answer:

P=120

Step-by-step explanation:

P(5,5)=?

P(n,r)=n!/(n-r)!P(5,5)=5!/(5-5)!P(5,5)=5!/0!P(5,5)=120/1P(5,5)=120

12. Activity 4: LET'S PRACTICE!Direction: Evaluate each expression.1. 4P22. P(5,5)3. P(7, r) = 8404. -4 + 7P45. 5 . 6Ps​


Answer:

1.P6

2.5 (25)

3.P (7r)

4.7P

5.30ps.


13. If P(n,4) =840, what is n? A. 8 B. 7 C. 6 D. 5​


Answer:

letter d po

Step-by-step explanation:

brainliest me plss


14. activity 5: warm that mind up! solve for the unknown in each item, and then answer the questions that follow with solution 1.P(6,6)= 2.P(7,r)=840 3.P(n,3)=60 4.P(n,3)=504 5.P(10,5)= 6.P(8,r)=6720 7.P(8,3)= 8.P(n,4)=3024 9.P(12,r)=1320 10.P(13,r)=156


Answer:

1. 720; 5. 30,240; 7. 336

Step-by-step explanation:

[tex]P(n,r) = \frac{n!}{(n-r)!}[/tex]

1. [tex]P(6, 6) = \frac{6!}{(6-6)!}[/tex]

[tex]= \frac{6!}{0!}[/tex] (Take note that 0! = 1, not zero)

[tex]= \frac{6!}{1}[/tex]

= 6 x 5 x 4 x 3 x 2 x 1

= 720

5. [tex]P(10,5) = \frac{10!}{(10-5)!}[/tex]

[tex]= \frac{10!}{5!}[/tex]

= 10 x 9 x 8 x 7 x 6

= 30,240

7. [tex]P (8, 3) = \frac{8!}{(8-3)!}[/tex]

[tex]= \frac{8!}{5!}[/tex]

= 8 x 7 x 6

= 336

If you want to try answering more questions related to permutations and combinations, click on any of these links below:

brainly.ph/question/1308910

brainly.ph/question/1459992

brainly.ph/question/2101331


15. Learning Task 3: Solve for the unknown in each item, and then answer the questions that follow. 1. P(6, 6) = ___ 2. P(7, r) = 840 3. P(8, 3) = ___ 4. P(n, 3) = 504 5. P(10, 5) = ___plss pa answer po :(​


✏️PERMUTATIONS

[tex]\red{••••••••••••••••••••••••••••••••••••••••••••••••••}[/tex]

[tex] \underline{\mathbb{DIRECTIONS:}} [/tex]

Solve for the unknown in each item, and then answer that questions that follow.

[tex]\red{••••••••••••••••••••••••••••••••••••••••••••••••••}[/tex]

[tex] \underline{\mathbb{ANSWER:}} [/tex]

[tex] \qquad\Large\rm» \:\: 1. \: \green{P(6,6) = 720} [/tex]

[tex] \qquad\Large\rm» \:\: 2. \: \green{r = 3} [/tex]

[tex] \qquad\Large\rm» \:\: 3. \: \green{P(8,3) = 336} [/tex]

[tex] \qquad\Large\rm» \:\: 4. \: \green{n = 9} [/tex]

[tex] \qquad\Large\rm» \:\: 5. \: \green{P(10,5) = 30\text,240} [/tex]

[tex]\red{••••••••••••••••••••••••••••••••••••••••••••••••••}[/tex]

[tex] \underline{\mathbb{SOLUTIONS:}} [/tex]

» Using the Permutation Formula to find the values.

[tex]\begin{aligned} & \bold{\color{lightblue}Formula:} \\ & \boxed{\: \rm _nP_r = \frac{n!}{(n-r)!} \:} \end{aligned} [/tex]

[tex]\red{••••••••••••••••••••••••••••••••••••••••••••••••••}[/tex]

#1. P(6,6)

[tex]\begin{aligned} \rm P(6,6) = \frac{6!}{(6 - 6)!} \end{aligned} [/tex]

[tex]\begin{aligned} \rm P(6,6) = \frac{ \: 6! \: }{0!} \end{aligned} [/tex]

[tex]\rm P(6,6) = 6! [/tex]

[tex]\rm P(6,6) = 6 \cdot 5 \cdot 4 \cdot 3 \cdot 2[/tex]

[tex]\rm P(6,6) = 720[/tex]

[tex] \therefore [/tex] The number of permutations is 720.

[tex]\red{••••••••••••••••••••••••••••••••••••••••••••••••••}[/tex]

#2. P(7, r) = 840

[tex]\begin{aligned} \rm P(7,r) = \frac{7!}{(6 - r)!} \end{aligned} [/tex]

[tex]\begin{aligned} \rm 840 = \frac{7!}{(6 - r)!} \end{aligned}[/tex]

» Exchange 840 and (6 - r)!

[tex]\begin{aligned} \rm (6 - r)! = \frac{7!}{840} \end{aligned}[/tex]

[tex]\begin{aligned} \rm (6 - r)! = \frac{ \cancel{840} \cdot 3!}{ \cancel{840}} \end{aligned}[/tex]

[tex]\rm (6 - r)! = 3![/tex]

» Removed (!) on both sides.

[tex]\rm 6 - r = 3[/tex]

[tex]\rm r = 6 - 3[/tex]

[tex]\rm r = 3[/tex]

[tex] \therefore [/tex] The value of r is 3.

[tex]\red{••••••••••••••••••••••••••••••••••••••••••••••••••}[/tex]

#3. P(8, 3)

[tex]\begin{aligned} \rm P(8,3) = \frac{8!}{(8 - 3)!} \end{aligned}[/tex]

[tex]\begin{aligned} \rm P(8,3) = \frac{ \: 8! \: }{5!} \end{aligned}[/tex]

[tex]\begin{aligned} \rm P(8,3) = \frac{ \: 8 \cdot 7 \cdot 6 \cdot \cancel{5!} \: }{ \cancel{5!}} \end{aligned}[/tex]

[tex]\rm P(8,3) = 8 \cdot 7 \cdot 6[/tex]

[tex]\rm P(8,3) = 336[/tex]

[tex] \therefore [/tex] The number of permutations is 336.

[tex]\red{••••••••••••••••••••••••••••••••••••••••••••••••••}[/tex]

#4. P(n, 3) = 504

[tex]\begin{aligned} \rm P(n,3) = \frac{n!}{(n - 3)!} \end{aligned}[/tex]

[tex]\begin{aligned} \rm 504 = \frac{n!}{(n - 3)!} \end{aligned}[/tex]

» Simplify by canceling.

[tex]\begin{aligned} \rm 504 = \frac{n(n - 1)(n - 2) \cancel{(n - 3!)}}{ \cancel{(n - 3)!}} \end{aligned}[/tex]

[tex]\rm 504 = n(n - 1)(n - 2)[/tex]

» Expand to get the product.

[tex]\rm 504 = {n}^{3} - 3n^{2} + 2n [/tex]

[tex]\rm {n}^{3} - 3n^{2} + 2n - 504 = 0[/tex]

» Factor out then apply the Zero Product Property.

[tex]\rm (n - 9)( {n}^{2} + 6n + 56) = 0[/tex]

[tex]\rm n - 9 = 0 \quad; \quad {n}^{2} + 6n + 56 = 0[/tex]

[tex]\rm n = 9 \quad; \quad “No \ real \ solutions” [/tex]

[tex] \therefore [/tex] The value of n is 9.

[tex]\red{••••••••••••••••••••••••••••••••••••••••••••••••••}[/tex]

#5. P(10, 5)

[tex]\begin{aligned} \rm P(10,5) = \frac{10!}{(10 - 5)!} \end{aligned}[/tex]

[tex]\begin{aligned} \rm P(10,5) = \frac{ \: 10! \: }{5!} \end{aligned}[/tex]

[tex]\begin{aligned} \rm P(10,5) = \frac{ \: 10 \cdot 9 \cdot 8 \cdot 7 \cdot 6 \cdot \cancel{5!} \: }{ \cancel{5!}} \end{aligned}[/tex]

[tex]\rm P(10,5) = 10 \cdot 9 \cdot 8 \cdot 7 \cdot 6 [/tex]

[tex]\rm P(10,5) = 30\text,240 [/tex]

[tex] \therefore [/tex] The number of permutations is 30,240.

[tex]\red{••••••••••••••••••••••••••••••••••••••••••••••••••}[/tex]

#CarryOnLearning

✏️ PERMUTATIONS

[tex] \color{darkblue}••••••••••••••••••••••••••••••••••••••••••••••••••••••••[/tex]

Learning Task 3: Solve for the unknown in each item, and then answer the questions that follow.

1. P(6, 6) = ___ 2. P(7, r) = 840 3. P(8, 3) = ___ 4. P(n, 3) = 504 5. P(10, 5) = ___

[tex] \color{darkblue}••••••••••••••••••••••••••••••••••••••••••••••••••••••••[/tex]

THE ANSWER ☕

1). P(6, 6) = 720

2). P(7, r) = 840 = r = 3

3). P(8, 3) = 336

4). P(n, 3) = 504 = n = 9

5). P(10, 5) = 30,240

[tex] \color{darkblue}••••••••••••••••••••••••••••••••••••••••••••••••••••••••[/tex]


16. P(7,r)=840,then r=?______. p(n,3)=60,then n=?______. p(10,5=?_______. p(8,r)=6.720,then r=? p(8,3)=?_______​


Answer:

combination or permutation?

Step-by-step explanation:

sabihin mo lang kung ano yan aansweran konon after


17. Supply the conect answer in each number 1. P 17.1] = 840, then r= 2. Pin. 3) = 60. then n= 3. P(10.5)= 4. P 18.1) = 6,720 then = 5. P (8,3 ) =​


Answer:

sorry po diko po alama

Step-by-step explanation:

[tex]\blue{ \rule{0pt}{99999pt}}[/tex]

hello po sorry po kung may nag answer ng Hindi Ang tunay na answer


18. Solve for the unknown in each item, and then answer the questions that follow. 2. P(7, r) = 840


p (7,4) = 840

7 x 6 x 5 x 4 = 840

19. P (n,4)=840= find the objects​


Answer:

[tex]P(n,4) = 840[/tex]

[tex]P(n,r) = \frac{n!}{(n - r)!} [/tex]

[tex]840 = \frac{n!}{(n - 4)!} [/tex]

[tex]840 = \frac{(n)(n - 1)(n - 2)(n - 3)(n - 4)!}{(n - 4)!} [/tex]

cancel (n - 4)!

[tex]840 = (n)(n - 1)(n - 2)(n - 3)[/tex]

[tex]840 = (n)(n - 1)( {n}^{2} - 5n + 6)[/tex]

[tex]840 = (n)( {n}^{3} - 5 {n}^{2} + 6n - {n}^{2} + 5n - 6)[/tex]

[tex]840 = (n)( {n}^{3} - 6 {n}^{2} + 11n - 6)[/tex]

[tex]840 = {n}^{4} - 6 {n}^{3} + 11 {n}^{2} - 6n[/tex]

[tex] {n}^{4} - 6 {n}^{3} + 11 {n}^{2} - 6n - 840 = 0[/tex]

the roots are:

[tex]n = - 4,7, \frac{3 + i \sqrt{111} }{2} , \frac{3 - i \sqrt{111} }{2} [/tex]

take the positive whole number.

n = 7


20. 1.P (n, 2} = 30 *2 pointsA. r= 6B. n=6C. n= 7D. r= 72.P (7, r) = 840 *2 pointsr= 4n= 4r=5n= 53.C (n,10) = 3C (n, 9) *2 pointsA. n= 37B. n= 38C. n= 39D. n= 404.C (13, r) = 286 *2 pointsA. r=3B. r=4C. r=5D. r=65.C (n, r) = 4 and P (n, r) = 24 *2 pointsA. n=4, r=3B. n=5, r=3C. n=4, r=4D. n=6, r=3​


Answer:

1.A

2.C

3.D

4.B

5.C

Step-by-step explanation:

pls correct me if I wrong


21. A. Evaluate the following: 1. P(8,2) 2. ¹¹PS53. P(7,r) = 840 4. P(5,5) 5. P{n, 4) = 1680​


Answer:

1.76.2

2.27

3.847.0⁰

4same answer in no.1

5.its not exact answer


22. Activity 1: Warm That Mind Up! Directions: Determine the unknown in ec follow. Use a separate sheet of paper. 2 P(7.r) = 840 1. P(6, 6)= 3 P (n, 3) = 60 4. P (8, 3) = 5. P (n, 4) 3024 opg​


[tex]\large\purple{{{\sf{Hi!}}}}[/tex]

[tex]\large\tt\purple{⊱─━━━━━━━⊱༺●༺⊰━━━━━━━─⊰}[/tex]

2. P(7, r) = 840

[tex]\large\sf\purple{r = 4}[/tex]

1. P(6, 6) =

[tex]\large\sf\purple{720}[/tex]

3. P(n, 3) = 60

[tex]\large\sf\purple{n = 5}[/tex]

4. P(8, 3) =

[tex]\large\sf\purple{336}[/tex]

5. P(n, 4) = 3024

[tex]\large\sf\purple{n = 9}[/tex]

[tex]\large\tt\purple{⊱─━━━━━━━⊱༺●༺⊰━━━━━━━─⊰}[/tex]

[tex]\large\tt{◡̈CarryOnLearning}[/tex]


23. Supply the correct answer in each number. 1. P (7,0) = 840, then r = 2. Pin, 3) = 60, then n= 3. P ( 10,5)= 4. P (8,0) = 6, 720, then r= 5. P (8,3 ) =​


Step-by-step explanation:

like rn sn Maka tolong


24. 9. If 7.1) =840,what is r?.​


Answer:

P ( n , r ) = n / ( n = r  )                                                                                                             P ( 7 , r )  =840   ,  840  7 / ( 7 = r )  840 ( 7 - r ) = 7

Step-by-step explanation:

( 7 - r ) = 5040 / 840 , ( 7 - r  ) = 6                                                                                       7 - r = 3         ,      r = 4                                                                                                               Yan lang alam


25. 1.P(6,6)=_____ 2.P(7,r)=840 3.P(n,3)=60 4.P(n,3)=504 5.P(10,5)=_____ 6.P(8,r)=6720 7.P(8,3)=_____ 8.P(n,4)=3024 9.P(12,r)=1320 10.P(13,r)=156


1. 720
2. 4
3. 5
4. 9
5. 30,240
6. 5
7.  336
8. 9
9. 3
10. 2


26. Learning Task 2Solve for the unknown in each item1. P(6.6)2. P(7.r) - 8403. P(n,3) 5044. P(10,5)5. P(13.2) -​


Answer:

1. 720

2. (7.4)

3. (9.3)

4. 30,240

5. 156

Step-by-step explanation:

1. 6×5×4×3×2×1=7202. 7×6×5×4=8403. 9×8×7=5044. 10×9×8×7=30,2405. 13×12=156

27. Learning Task 3:Solve for the unknown in each item, and then answer the questions that follow.1. P(6, 6) = ___ 2. P(7, r) = 840 3. P(8, 3) = ___ 4. P(n, 3) = 504 5. P(10, 5) = ___plss pa answer po :(​


1. P(6,6) = 6! = 6x5x4x3x2x1 = 1203. P(8.3) = 8x7x6 = 3365. P(10,5) = 10! = 10x9x8x7x6 = 30240#CarryOnLearing#FollowForMoreSALAMATH

28. P(7,r)=840? what is the formula about this?


to get the value of "r" let r= 4

P(7,4)=7.6.5.4
=840

29. P(6,6)= P(7,r)=840 P(n,3)=60 P(10,5)=


Answer:

720

3

5

30,240

Step-by-step explanation:

P(6,6)=(6-6)!=0!

6x5x4x3x2x1=720

P(7,r)=840=(7-3)!

7x6x5x4=840

P(n,3)=60=(5-3)!=2!

5x4x3=60

P(10,5)=(10-5)=5! 10x9x8x7x6=30,240


30. ACTIVITY 2: KEEP PRACTICING!Direction: Solve for the unknown in each item.1. P(5,5)2. P(7, r) = 8403. P(n, 3) = 5044. Pn.n-1) = 65. P(16,4) = 208. Pân, 2)​


[tex] \large\underline \mathcal{{QUESTION:}}[/tex]

Direction: Solve for the unknown in each item.

1. P(5,5)

2. P(7, r) = 840

3. P(n, 3) = 504

4. P(n,n-1) = 6

5. P(16,4) = 208P(n, 2)

[tex]\\[/tex]

[tex] \large\underline \mathcal{{SOLUTION:}}[/tex]

1. [tex]\rm{P(n,r)= \frac{n!}{(n-r)!}}[/tex]

[tex]\sf{P(5,5)= \frac{5!}{(5-5)!}}[/tex]

[tex]\sf{P(5,5)= \frac{5!}{(0)!}}[/tex]

[tex]\sf{P(5,5)= \frac{5×4×3×2×1}{1}}[/tex]

[tex]\sf{P(5,5)= 5×4×3×2×1}[/tex]

[tex]\boxed{\rm{P(5,5)= 120}}[/tex]

[tex]\\[/tex]

2. [tex]\rm{P(n,r)= \frac{n!}{(n-r)!}}[/tex]

[tex]\sf{P(7,r)= \frac{7!}{(7-r)!}}[/tex]

[tex]\sf{840= \frac{7!}{(7-r)!}}[/tex]

[tex]\sf{840(7-r)!= 7!}[/tex]

[tex]\sf{840(7-r)!= 7×6×5×4×3×2×1}[/tex]

[tex]\sf{840(7-r)!=5040}[/tex]

[tex]\sf{(7-r)!=\frac{5040}{8040}}[/tex]

[tex]\sf{(7-r)!=6 }[/tex]

[tex]\textsf{express 6 as 3!}[/tex]

[tex]\sf{(7-r)! = 3!}[/tex]

[tex]\textsf{cancel out factorial sign}[/tex]

[tex]\sf{7-r=3}[/tex]

[tex]\sf{7-3=r}[/tex]

[tex]\boxed{\rm{4=r }}[/tex]

[tex]\\[/tex]

3. [tex]\rm{P(n,r)= \frac{n!}{(n-r)!}}[/tex]

[tex]\sf{P(n,3)=\frac{n!}{(n-3)!}}[/tex]

[tex]\sf{504=\frac{n!}{(n-3)!}}[/tex]

[tex]\textsf{expand n!}[/tex]

[tex]\sf{504=\frac{n(n-1)(n-2)(n-3)!}{(n-3)!}}[/tex]

[tex]\sf{504=\frac{n(n-1)(n-2)\cancel{(n-3)!}}{\cancel{(n-3)!}}}[/tex]

[tex]\sf{504=n(n-1)(n-2)}[/tex]

[tex]\sf{504=n³-3n²+2n}[/tex]

[tex]\sf{0=n³-3n²+2n-504}[/tex]

[tex]\sf{0=(n-9)(n²+6n+56)}[/tex]

[tex]\textsf{\small{Neglecting the other root , we will get the positive}}[/tex][tex]\textsf{\small{value}}[/tex]

[tex]\sf{0=n-9}[/tex]

[tex]\boxed{\sf{n=9}}[/tex]

[tex]\\[/tex]

4. [tex]\rm{P(n,r)= \frac{n!}{(n-r)!}}[/tex]

[tex]\sf{P(n,n-1)=\frac{n!}{(n-(n-1))!}}[/tex]

[tex]\sf{6=\frac{n!}{(n-n+1)!}}[/tex]

[tex]\sf{6=\frac{n!}{(1)!}}[/tex]

[tex]\sf{6=n!}[/tex]

[tex]\textsf{Remember that 3! = 6}[/tex]

[tex]\sf{6=3! \:,\boxed{\sf{n=3}}}[/tex]

[tex]\\[/tex]

5. [tex]\sf{P(16,4)=208P(n,2)}[/tex]

[tex]\sf{\frac{16!}{(16-4)!}=208(\frac{n!}{(n-2)!})}[/tex]

[tex]\sf{\frac{16!}{12!}=208(\frac{n(n-1)(n-2)!}{(n-2)!})}[/tex]

[tex]\sf{\frac{16×15×14×13×12!}{12!}=208(\frac{n(n-1)\cancel{(n-2)!}}{\cancel{(n-2)!}})}[/tex]

[tex]\sf{16×15×14×13=208[n(n-1)]}[/tex]

[tex]\sf{43,680=208(n²-n)}[/tex]

[tex]\sf{\frac{43,680}{208}=(n²-n)}[/tex]

[tex]\sf{210=(n²-n)}[/tex]

[tex]\sf{0=n²-n-210}[/tex]

[tex]\sf{0=(n-15)(n+14)}[/tex]

[tex]\textsf{\small{Neglecting the other root , we will get the positive}}[/tex][tex]\textsf{\small{value}}[/tex]

[tex]\sf{0=n-15}[/tex]

[tex]\boxed{\sf{15=n}}[/tex]

[tex]\\[/tex]

[tex] \large\underline \mathcal{{ANSWER:}}[/tex]

120r = 4n = 9n = 3n = 15

Video Terkait

Kategori math